Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.24.477043

ABSTRACT

The recent emergence of highly mutated SARS-CoV-2 Omicron variant has debilitating effect on public health system of the affected countries worldwide. Currently India is facing third wave of COVID-19 pandemic and going through a severe crisis. Within short span of time, the variant has shown high transmissibility and capability of evading the immune response generated against natural infection and vaccination. The immune escape potential of Omicron is a serious concern and further needs to be explored. In the present study, we have assessed the IgG and neutralizing antibody (NAb) response in breakthrough individuals vaccinated with two doses ChAdOx1 nCoV-19 vaccine (n=25), breakthrough individuals vaccinated with two doses of BNT162b2 mRNA vaccine (n=8) and unvaccinated individuals (n=6). All these individuals were infected with Omicron variant. The IgG antibody activity in the sera of the ChAdOx1 nCoV-19 and BNT162b2 mRNA breakthrough individuals was comparable with S1-RBD, while it was lesser in BNT162b2 mRNA breakthrough individuals with N protein and inactivated whole antigen IgG ELISA. BNT162b2 mRNA breakthrough individuals showed moderate reduction in NAb GMTs compared to ChAdOx1 nCoV-19 against Alpha, Beta and Delta. However, 3-fold higher reduction was observed with omicron variant in BNT162b2 mRNA than ChAdOx1 nCoV-19. Apparently, Alpha variant was modestly resistant to the sera of unvaccinated individuals than Beta, Delta and Omicron. Our study demonstrated substantial immune response in that the individuals infected with Omicron. The neutralizing antibodies could effectively neutralize the Omicron and other VOCs including the most prevalent Delta variant.


Subject(s)
COVID-19 , Breakthrough Pain
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.19.477013

ABSTRACT

SARS-CoV-2 Omicron variant is rampantly spreading across the globe. Animal models are useful in understanding the disease characteristics as well as properties of emerging SARS-CoV-2 variants. We assessed the pathogenicity and immune response generated by BA.1 sub-lineage of SARS-CoV-2 Omicron variant with R346K mutation in 5 to 6-week old Syrian hamsters. Virus shedding, organ viral load, lung disease and immune response generated were sequentially assessed. The disease characteristics of Omicron were found to be similar to that of other SARS-CoV-2 variants of concerns in hamsters like high viral replication in the respiratory tract and interstitial pneumonia. The infected hamsters demonstrated lesser body weight gain in comparison to the uninfected control hamsters. Viral RNA could be detected in nasal washes and respiratory organs (nasal turbinate, trachea, bronchi and lungs) till 10 and 14 days respectively. The clearance of the virus was observed from nasal washes and lungs by day 7. Neutralizing antibody response against Omicron variant was detected from day 5 with rising antibody titers till 14 days. However, the cross-neutralization titre of the sera against other variants showed severe reduction ie., 7 fold reduction against Alpha and no titers against B.1, Beta and Delta. This preliminary data shows that Omicron variant infection can produce moderate to severe lung disease and the neutralizing antibodies produced in response to Omicron variant infection shows poor neutralizing ability against other co-circulating SARS-CoV-2 variants like Delta which necessitates caution as it may lead to increased cases of reinfection.


Subject(s)
Weight Gain , Lung Diseases , Lung Diseases, Interstitial
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.02.474750

ABSTRACT

Due to failure of virus isolation of Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, we infected Syrian hamsters and then passage into Vero CCL-81 cells. The Omicron sequences were studied to assess if hamster could incorporate any mutation to changes its susceptibility. L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene and absence of V17I mutation in E gene was observed in sequences of hamster passage unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequence which suggests usefulness of these isolates in future studies.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.13.21260273

ABSTRACT

During March to June 2021 India has experienced a deadly second wave of COVID19 with an increased number of post vaccination breakthrough infections reported across the country. To understand the possible reason of these breakthroughs we collected 677 clinical samples (throat swab/ nasal swabs) of individuals who had received two doses (n=592) and one dose (n=85) of vaccines (Covishield and Covaxin,) and tested positive for COVID19, from 17 states/Union Territories of country. These cases were telephonically interviewed and clinical data was analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both the cases. Analysis of both the cases determined that 86.69% (n=443) of them belonged to the Delta variant along with Alpha, Kappa, Delta AY.1 and Delta AY.2. The Delta variant clustered into 4 distinct sub-lineages. Sub-lineage I had mutations: ORF1ab, A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, A6319V and N G215C; Sub lineage II : ORF1ab P309, A3209V, V3718A, G5063S, P5401L and ORF7a L116F; Sub lineage III : ORF1ab A3209V, V3718A, T3750I, G5063S, P5401L and Spike A222V; Sub-lineage IV ORF1ab P309L, D2980N, F3138S and spike K77T. This study indicated that majority of the clinical cases in the breakthrough were infected with the Delta variant and only 9.8% cases required hospitalization while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality.


Subject(s)
COVID-19 , Breakthrough Pain
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.01.450676

ABSTRACT

The recent emergence of B.1.617 lineage has created grave public health problem in India. The lineage further mutated to generate sub-lineages B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.3. Apparently, the Delta variant has slowly dominated the other variants including B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.3. With this, World Health Organization has described this sub-lineage as variant of concern. The high transmissibility associated with Delta variant has led to second wave of pandemic in India which affected millions of people. Besides this, variant of concerns has been reported to show lower neutralization to several approved vaccines. This has led to breakthrough infections after completion of vaccination regimen. There is limited information available on the duration of protective immune response post-infection, vaccination or breakthrough infection with SARS-CoV-2. In this study, we have evaluated immune response in sera of the Covishield vaccinated individuals belonging to category: I. one dose vaccinated, II. two doses vaccinated, III. COVID-19 recovered plus one dose vaccinated, IV. COVID-19 recovered plus two doses vaccinated and V. breakthrough COVID-19 cases. The findings of the study demonstrated that the breakthrough cases and the COVID-19 recovered individuals with one or two dose of vaccine had relatively higher protection against Delta variant in comparison to the participants who were administered either one or two doses of Covishield. Prior vaccination results in less severe disease against subsequent infection provide evidence that both humoral and cellular immune response play an important role in protection.


Subject(s)
Breakthrough Pain , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.05.447177

ABSTRACT

Recently, multiple SARS-CoV-2 variants have been detected across the globe.The recent emergence of B.1.617 lineage has created serious public health problem in India. The high transmissibility was observed with this lineage which has led to daily increase in the number of SARS-CoV-2 infections. Apparently, the sub-lineage B.1.617.2 has slowly dominated the other variants including B1617.1, B.617.3 and B.1.1.7. With this, World Health Organization has described B.1.617.2 as variant of concern. Besides this, variant of concern B.1.351 has been also reported from India, known to showreducedefficacyfor many approved vaccines. With the increasing threat of the SARS-CoV-2 variants, it is imperative to assess the efficacy of the currently available vaccines against these variants. Here, we have evaluated the neutralization potential of sera collected from COVID-19 recovered cases (n=20) and vaccinees with two doses of BBV152 (n=17) against B.1.351 and B.1.617.2 compared to the prototype B.1 (D614G) variant.The finding of the study demonstrated a reduction in neutralization titers with sera of COVID-19 recovered cases(3.3-fold and 4.6-fold) and BBV152 vaccinees (3. 0 and 2.7 fold) against B.1.351 and B.1.617.2 respectively. Although, there is reduction in neutralization titer, the whole-virion inactivated SARS-CoV-2 vaccine (BBV152) demonstrates protective response against VOC B.1351 and B.1.617.2.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.05.442760

ABSTRACT

Background: The recent emergence of new SARS-CoV-2 lineage B.1.617 in India has been associated with a surge in the number of daily infections. This variant has combination of specific mutations L452R, E484Q and P681R reported to possibly enhance the transmissibility with likelihood of escaping the immunity. We investigated the viral load and pathogenic potential of B.1.617.1 in Syrian golden hamsters. Methods: Two groups of Syrian golden hamsters (9 each) were inoculated intranasally with SARS CoV-2 isolates, B.1 (D614G) and B.1.617.1 respectively. The animals were monitored daily for the clinical signs and body weight. The necropsy of three hamsters each was performed on 3, 5- and 7-days post-infection (DPI). Throat swab (TS), nasal wash (NW) and organ samples (lungs, nasal turbinate, trachea) were collected and screened using SARS-CoV-2 specific Real-time RT-PCR. Results: The hamsters infected with B.1.617.1 demonstrated increased body weight loss compared to B.1 variant. The highest viral load was observed in nasal turbinate and lung specimens of animals infected with B.1.167.1 on 3 DPI. Neutralizing antibody (NAb) and IgG response in hamsters of both the groups were observed from 5 and 7 DPI respectively. However, higher neutralizing antibody titers were observed against B.1.167.1. Gross pathology showed pronounced lung lesions and hemorrhage with B.1.671 compared to B.1. Conclusions: B.1617.1 and B.1 variant varied greatly in their infectiousness, pathogenesis in hamster model. This study demonstrates higher pathogenicity in hamsters evident with reduced body weight, higher viral load in lungs and pronounced lung lesions as compared to B.1 variant.


Subject(s)
Hemorrhage , Lung Diseases , Tracheomalacia , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL